3 Likelihood Theory slide 92

3.1 Basic Results slide 93
Motivation
O Likelihood
— provides a general paradigm for inference on parametric models, with many generalisations and
variants;

— uses only minimal sufficient statistics;
— is a central concept in both frequentist and Bayesian statistics;
— has a simple, general and widely-applicable ‘large-sample’ theory; but
— is not a panacea!
O Plan below:
give (fairly) general setup;

prove main results for scalar parameter;

discussion of inference;

vector parameter, nuisance parameters, ...
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Basic setup
O LetY,Yq,...,Y, id g, and define the Kullback—Leibler divergence from the data-generating
model g to a candidate density f,

KL(g, f) = Eg{log g(Y') —log f(Y)} = E, [— log {%H 20,

where the inequality holds because — log x is convex and is strict unless f = g (Jensen).

O In a parametric setting f belongs to a parametric family 7 = {fy : 6 € ©}, so minimising
KL(g, f) over f is equivalent to maximising E,log f(Y’;6), which is estimated by

00)=n""> log f(¥;;0) — Eglog f(Y30), n — oo.
j=1

O 6, = argmaxyEglog f(Y'; 0) gives the optimal large-sample fit of fy to g.
O Inanideal case g € F, so g = fg,, but the theory does not require this (yet).
00 The natural estimator of 6, is the maximum likelihood estimator

6= argmax, £(6),

" = ~ P ~ as,
but we need conditions on  to ensure that § — 6, or (better) § = 6, as n — oo.
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Regular models

Notation: VA(6) = Oh(6)/060 and V2h(0) = VVTh(0) = 0>h(6)/0000".

The asymptotic properties of the MLE rely on regularity conditions:

(C1) 6, is unique and interior to © C R? for some finite d, and © is compact;
(C2) the densities fy defined by any two different values of § € © are distinct;

(C3) there is a neighbourhood N of 6, within which the first three derivatives of the log
likelihood with respect to # exist almost surely, and for r,s,t = 1,...,d satisfy
|03 log f(Y;0)/06,00,00;| < m(Y) with E;{m(Y)} < oo; and

(C4) within NV, the d x d matrices
u(f) =By {~V?log f(Y;0)}, hi(8) =Eg{Vlog f(Y;0)V"log f(Y;0)},

are finite and positive definite. When g = f_ we shall see that /;(0,) = 21(0;).
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Regularity conditions

[ (C1) ensures that 6 can be ‘on all sides’ of 6, in the limit — if it fails, then any limiting
distribution cannot be normal;

O (C2) is essential for consistency, otherwise ) might not converge — it often fails in mixture
models, for which care is needed;

00 (C3) is needed to bound terms of a Taylor series — can be replaced by other conditions, see van
der Vaart (1998, Asymptotic Statistics, Chapter 5); and

O (C4) ensures that the asymptotic variance of 0 is positive definite.
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Consistency of the MLE

Lemma 49 /fY;,...,Y, ~ g and n — oo, then under (C1) and (C2) a sequence of maximum
likelihood estimators § exists such that § —— 0.

This result:
O does not require fy to be smooth, so it is quite general;
[0 guarantees that a consistent sequence exists, but not that we can find it;
O  but if the log likelihood is concave (as in exponential families, for example), then there is (at most)
one maximum for any n, and if it exists this must converge to 6;
O can be generalized to vector 8, but the argument is more delicate.
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Note to Lemma 49

O We prove this for 6 scalar.
00 As the s correspond to different densities, precisely one 6, minimises KL(g, f5).

O Take any e >0 and let 6,0 =6, £ ¢, write D,,(9) = £(0,) — €(6), so D,,(6) = 0, and note
that as n — oo,

Dy(0+) - KL(g, fo,)~KL(g, fo,) = a4 >0, Dn(0-) == KL(g, fo_)~KL(g, f5,) = a > 0.
O If A, and B, denote the events D,,(61) > 0 and D,,(6_) > 0, Boole's inequality gives
P(A,NB,) =1-P(A5 UB) >1—-P(A%) — P(B;).
Now
P(A7) = P{Dn(0+) < 0} = Play — Dn(04) > ay} < P{[Dn(04) —ay| 2 ar} =0, n— oo,

and likewise P(BS) — 0. Hence P(4, N B,) — 1

[0 Hence there is a local minimum of D,,(6), or equivalently a local maximum of £(), inside the
interval (0, — €,0, + €) with probability one as n — oo, and as this is true for arbitrary ¢, the

corresponding sequence of maximisers 6 satisfies P(|f — 4] > €) — 0 and therefore is consistent.
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Asymptotic normality of the MLE

Theorem 50 /fYy,...,Y, Y g, then under (C1)—(C4) the consistent sequence of maximum
likelihood estimators 6 satisfies

w26~ 85) = Na{0,17 (B (B)rs ' (6,)}, m = oo,
where for a single observation Y we define
0 (0) =B, {~=V?1og f(Y;0)}, hi(0) =E,{Vlog f(Y;0)V"log f(Y;0)}.
O This implies that for large n we can use the approximation
6~ Nd{emZil(gg)h(eg)fl(eg)}v

where 2(6) = n1;(0) and h(0) = nhy(0) correspond to a random sample of size n.

[0 This provides tests and confidence intervals based on the approximate pivots
v (0, —0,,) ~ N(0,1), r=1,...,d,

where v, are the diagonal elements of an estimate of v =1 (6,)A(6,)1~1(6,).
O When g = fp,, 11(64) = h1(0,) and the variance (matrix) becomes 1(6,) '
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Note to Theorem 50: A (fairly) simple argument
OO Write

— o~

1
Ozvaﬁzvﬂ%yh/V%WWHW—%HW—%Mu
0
and note that U, = n'/2V0(0,) -2 U ~ Ny{0, h1(6,)}, so writing Z,, = n'/2(6 — 60,) we have
1
m@1m:u@)%—/v%%+m1@mw}%:mgﬁﬁ%,
0

say, and as n — oo, Ji = — [ V2(,) dt L5 11(6,) and thus 11(6,) "1 -5 I;. Hence

21(99)_1JZZn = Z1(99)_1Un £> Z1(99)_1(] ~ Na{0,1 (99)_1h1(99)21(99)_1}-

00 For a more careful treatment of the integral, we need a uniform law of large numbers (ULLN),
which requires that J,,(6) = —V?2/(6) is measurable and continuous in @ within a compact subset
N of N, for almost all y, and that there exists a function d(Y) whose expectation is finite and for
which [|J,(0)|| < d(Y) for all § € N7, where || - || is a matrix norm. Then E{.J,(0)} = 11(0) is
continuous in 6 and
sup || () — 1 (0)]| =50, n — oco.
oeN

[0 Let 6 > 0 be small enough that Bs = {6 : |0 — 0,] <6} C N” and let A, = {|n"'/2Z,| < §} and
Cn =||J;y —1(0g)||. Then for € > 0 we have

P(C, >¢e)=P{C, >e}NA,) +PH{C, >} NAS) <PH{C, >e}NA,) +P(A),

where the last term tends to zero because n—'/27, = 0 — 0, L. 0. Now if 4,, holds, then
0, +tn"1/27, € Bs when 0 <t <1, so

1
Cn = H/ {Jn(eg + tnil/QZn) - Zl(ag + tn71/2Zn) + Z1(99 + tnil/zzn) - 21(99)} dt“
0

1
/]
< sup [|Jn(0) —u(0)] + sup [l (6) — 21 ()]

0eB;s 0€Bs

= D,+E,,
say. If C), > ¢ then at least one of D,, and E,, must exceed /2, so

PHC, >e}NA,) P({{Dn >¢/2} U{E, >¢/2}} N Ay)
P{D, >¢/2} N A,) + P{E, >¢/2}NA,)
P(D, >¢€/2) +P(E, > ¢/2).
Now D,, = 0 using the ULLN, and the continuity of 2;(#) at 6, implies that E,, can be made
smaller than /2 by a suitable choice of § > 0, in which case

P(C,>¢) < PHC,>e}nA,)+PAY)

< P(D,>¢/2)+P(E,>c¢c/2)+P(A})

— 0, n— o0,

IN

1
Jn(0g +tn"YV2 7)) — 0y (0, +tn~Y22,)|| dt + / Hzl(ﬁg +in"Y22,) — zl(GQ)H dt
0

VARRVANNVAN

which implies that J il 11(0,) and therefore that 11 (6,) "} L, 1, as required.
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Note to Theorem 50: Another approach

[0 We first note that under the given conditions, 6, gives a stationary point of KL(g, fy), and
therefore

9(y) dy,

0= VKL(g, folly—g, =~ ¥ [ log f(si8)g(y) dy
=3

— - [ Vs s0)

0=0,

so E,{Vlog f(Y;0)} = 0.
O As 0 gives a local maximum of the differentiable function 00)=n""t > i1 log f(Y5;0),
0=V =n"")_ Viog f(¥;0).
j=1
and (supposing now that 6 is scalar, to simplify the expressions), Taylor series expansion gives
0= VE(0,) + (0 — 0,) V() + 3 — 0,)>V3E(67),
where 6* lies between 6, and 9 (so 6* il 6,). Hence

n'/2ve(0,)
~V20(0,) — R,/2’

n'/2(0 - 0,) = R, = (0 —0,)V°(6%). (3)

O Now

W) = 1Y Vo (V56,)
j=1

has mean (vector) zero and variance (matrix)

var {n1/2 Z Vlog f(Y5; Hg)} =n! ZEg{Vlog F(Y};00)VTlog f(Y};04)} = hi(by).
P =1

so the numerator of (3) converges in distribution to N'{0, 71 (6,)}, using the CLT.

O Moreover the weak law of large numbers gives

_ 1 <&
_VQE(HQ) - Th ZVQ log f(Yj;0g) o u(fy).
j=1

0 Lemma 51 shows that R,, — 0, so the denominator of (3) tends in probability to ¢1(6).
0 Putting the pieces together, we find that

n'2(0 = 0,) 25 Ng{0,01(65) "1 (65)01(64) '}, n — o0,

where the variance formula is also valid when 27 and A; are d x d matrices.

O The information quantities based on a random sample of size n are +(6,) = ne;(6,) and
h(fy) = nhi(0y), giving
0~ Nd(em2(99)7171(99)2(99)71}7

in which the variance is of the usual order 1/n.
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Note: A useful lemma

Lemma 51 Under the conditions of Theorem 50, R, = (5— 0,)V30(6%) L0 asn — o

Fore >0, B, = {|Ry| > ¢}, A, ={|6 — 64| > 0} and 0 > 0 small enough that N\ contains a ball
of radius ¢ around 6, we have

P(|R,| >¢) =P(B,NA,)+P(B,NA) <P(4,) +P(B,NAS),
where the first term tends to zero because the sequence 9 is consistent.
If |0 —6,] < 0, then (C3) implies that
Ral < 500> 0% log £(¥336)/06%] < 6073 m(Y;) = 671,
=1 j=1
say, and clearly M, 2, M, say. Therefore
P(B, NAS) = P(B, N0 — 0, > 6) < P(B,N|R,| < 6M,)
and for > 0 this equals
P(B,N|R,| <dM,NM, <M+n)+P(B,N|R,| <M, NM, > M +n),
which is bounded by

P{|Ry| > e N |Ry| < 6(M +n)} +P(IM, — M| > n).

The last term here tends to zero, because M,, £, M, and the first can be made equal to zero by
choosing § such that §(M + n) < €. This proves the lemma.
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Classical asymptotics

[0 The true model is supposed to lie in the candidate family, i.e., g € F, so 6, € ©.

[0 We saw on slide 38 that the moments of the d x 1 score vector U(#) = V{(0) are given under
mild conditions by the Bartlett identities, i.e.,

E(UO)} =0, var{U(0)} = E{VE(0)V 0(0)} = E{-V2(0)},

O Hence 1(6) = h(0), and 1(6) = n11(0) = nhy(6) when Yi,..., Y, % fy .

O Mathematically speaking the assumption that g € F is always false, but
— the asymptotic results are supposed to provide guidelines on what to expect when fitting

models — checking the regularity conditions in practice would require knowledge of g, in which
case there's no need for inference!
— this is largely irrelevant if model-checking suggests that fgq is ‘close enough’ to g.

OO Crucially, the interest parameter 1) should have a stable interpretation for candidates likely to be
close to g (i.e., within n=1/2) | so F is ‘robustly specified’ — if the model is not quite right, then
the interpretation of the crucial parameters will be unchanged.
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Note: Stable interpretation of a parameter

O To put some mathematical flesh on the discussion, suppose that g(y) = f(y;0,~) and the
assumed model is f(y;6,0). Then for small v, 6, = 6, satisfies

0 = /Velogf(y;Hw,O)f(y;H,w)dy

= / {Veolog f(y;0,7) + Vlog f(y;6,7)(0y — 0) + V2IVglog f(y;0,7)(0 —7) + - } f(y;6,
= 0—190(0,7)(0y — ) +10,(0,7)7y + 0(7),
which implies that the effect of incorrectly assuming that v = 0 is that gconverges to
0y = 0+ 155 (0,7)10,(0,7)7 + (7).

O It is also easy to check that figg(6,0) = 199(6,0) + O(7), so the two matrices become equal if
v — 0, in which case 11 (6,7) " h1(8,7)11(0,7) "t — 21(0,) !, which implies that for small v we
have

n!/2(0 = 0) = n'/2(0 — 0,) + n'/*(0, — 0) ~ Ng{0,21(0,7) "'} +n'/2(0, — 0).
O Now if v =n~%§ for some a > 0, then
n26, —0) = nl/Q_“ze_el (0,7)10(0,7)d,

which will tend to infinity if a < 1/2 (should be obvious asymptotically), to zero if a > 1/2 (can
be ignored asymptotically) and to a constant if a = 1/2. Hence there is an asymptotic bias for 6 if
there is misspecification, § # 0, unless 23, (6,7) = 0, i.e., the information matrix covariance for the
scores for 6 and v is zero. This is known as orthogonality of 6 and ~; see later.
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In practice ...

[0 We usually assume classical asymptotics and replace the sandwich matrix +(6,) "' h(6,):(6,) " by
the inverse of the observed information matrix

3\: —VQE(é\)a

which

— can be computed numerically without (possibly awkward) expectations,

will (helpfully!) misbehave if the maximisation is questionable,

has been found to give generally good results in applications,

has the heuristic justification that (5,3) are approximately sufficient for 6, as

~ ~

€(0g) = £(0) — 3(0 = 04)"7(0 — 0y).

N[

[0 Standard errors for @ are the square roots of the diagonal elements of 7.

O If we must make the sandwich we can replace «(6,) by 7 and 1(6,) by (e.g.)

h=>"Vlog f(Y;;0)V" log f(Y;:0),

Jj=1

though 717! can be unstable because / misbehaves.
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Related statistics

¥ Wy
T w,

1(6)

We

0 0, 0—»

Figure 6.2. Three asymptotically equivalent ways, all based on the log likelihood
function of testing null hypothesis 6 = 6y: Wg, horizontal distance; Wy, vertical
distance; Wy slope at null point.

From Cox (2006, Principles of Statistical Inference)
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Related statistics

O Classical asymptotics support inference for scalar § based on any of the (approximate) pivots

T =t(0,) =720 — 0,) ~ N(0,1), Wald statistic,
S =s(0,) =7 Y2U(6,) ~ N(0,1), score statistic,
W =w(b,) = 2{0(9) — 00,)} ~ X3, likelihood ratio statistic,
R=r(0y) = sign(d — 0,)w(0y)Y? ~ N(0,1), likelihood root.

The likelihood root has other names (e.g., directed likelihood ratio statistic).
[0 The distribution of W follows from the expansion on the previous slide.

O If 8° and 7(8°) have been obtained for observed data 3°, then the approximation
Po{T(0y) < 1°(64)} = {t°(6y)}
leads to (1 — &) Wald confidence interval g° ij(é\o)*lﬂzl,aﬂ based on T, while that based on
W is
{0:W°(0) < xE(1—a)} ={0:£2(0) > £°(6°) — xi(1 — )},

where 2, and x2(p) are respectively the p quantiles of the N(0,1) and x?2 distributions.
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Comparative comments
O Confidence intervals based on T' are symmetric, but those based on W or R take the shape of /¢
into account and are parametrisation-invariant;

(0 in small samples the distributional approximations for W and R are better than that for 7', and
that for W can be improved by Bartlett correction, using Wi = W/(1 + b/n);

O confidence sets based on W may not be connected (and if so T or R are unreliable);

(0 the main use of S is for testing in situations where maximisation of ¢ is awkward, and then 7 is
often replaced by (6,);

O a variant of R, the modified likelihood root

log ;
7°(99)

often gives almost perfect inferences even in small samples (more later ... ).

Example 52 Compute the above statistics when i1, ..., yn id exp(f) and compare the resulting
inferences with those from an exact pivot.
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Note to Example 52

(0.058,4.403) and (0.042,4.782) respectively.

O The log likelihood is £(0) = n(log 8 — 67y), for 6 > 0, which is clearly unimodal with 6= 1/y and

9(0) =n/62%.
0 Hence
to) = n'?(1-97y),
s(0) = n'*{1/(07) -1},
w(®) = 2n{07—log(07) — 1},
r(0) = sign(1-07)[2n {07 —log(07) — 1}]"/*.

O The exact pivot is 6 ) Y; whose distribution is gamma with unit scale and shape parameter n.

O Consider an exponential sample with n =1 and 5 = 1; then 7= 1. The log likelihood (), shown
in the left-hand panel of the figure, is unimodal but strikingly asymmetric, suggesting that
confidence intervals based on an approximating normal distribution for 9 will be poor. The
right-hand panel is a chi-squared probability plot in which the ordered values of simulated w(#) are
graphed against quantiles of the x? distribution—if the simulations lay along the diagonal line
x = g, then this distribution would be a perfect fit. The simulations do follow a straight line rather
closely, but with slope (1 +b/n)x?, where b = 0.1544. This indicates that the distribution of the
Bartlett-adjusted likelihood ratio statistic w(6)/(1 + b/n) would be essentially x3. The 95%
confidence intervals for § based on the unadjusted and adjusted likelihood ratio statistics are

stat.epfl.ch
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Exponential example

Log likelihood

-12 -10 -8

o
N
|
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— o _]
I (\ o ©
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=
©
=
o+
o -
T T T T T T T T T T T
0 3 4 5 6 0 2 4 6 8 10
0 Quantiles of chi-squared distribution

Likelihood inference for exponential sample of size n = 1. Left: log likelihood #(#). Intersection of the
function with the two horizontal lines gives two 95% confidence intervals for #: the upper line is based
on the x? approximation to the distribution of w(#), and the lower line is based on the
Bartlett-corrected statistic. Right: comparison of simulated values of likelihood ratio statistic w(#)
with x? quantiles. The x3 approximation is shown by the line of unit slope, while the (14 b/n)x?
approximation is shown by the upper straight line.
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Exponential example

0.8 1.0
|

0.6
|

Significance function
0.4

0.2

0.0
|

Approximate pivots and P-values based on an exponential sample of size n = 1. Left: likelihood root
7(0) (solid), score pivot s(6) (dots), Wald pivot () (dashes), modified likelihood root r*(6) (heavy),
and exact pivot 6 ) y; (dot-dash). The modified likelihood root is indistinguishable from the exact
pivot. The horizontal lines are at 0, +1.96. Right: corresponding confidence functions, with horizontal
lines at 0.025 and 0.975.
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Non-regular models
O The regularity conditions (C1)—(C4) apply in many settings met in practice, but not universally.
The most common failures arise when
— some of the parameters are discrete (e.g., change point problems),
— the model is not identifiable (distinct 6 values give the same model),
— 6 is on the boundary of the parameter space (e.g., testing for a zero variance),
- d = dim(0) grows (too fast) with n, or
— the support of f(y;0) depends on 6 (so the Bartlett identities fail).

[0 Even when the conditions are satisfied there can be datasets for which maximum likelihood
estimation fails, e.g.,

— there is no unique maximum to the likelihood, or
— the maximum is on the edge of the parameter space,

and then penalisation (equivalent to using a prior) is often used.

Example 53 IfYy,...,Y, id U(0,0), show that the limit distribution of n(6 — 5)/0 when n — oo is

exp(1). Discuss.
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Note to Example 53
O Inthiscase 1 = [ f(y;0)dy = foe 6~ dy, and differentiation with respect to 6 gives

0
0=1/6 —|—/ (=62 dy,

0
so the first Bartlett identity is not satisfied (because the support depends on 6, and f(6;6) # 0.

0 Owing to the independence,

L) =[] fr(ws0) = [T {6710 < y; <0)} = 6" I(maxy; <6), 6>0,
j=1 j=1

and therefore § = M = max Y;, whose distribution is

PM<z)=(z/0)", 0<z<8.

Now
P{n(6-0)/0 <a} =P@E=0-w0/n)=1-{(6 - 20/n)/6}" — 1~ exp(~a),

as required. Note that:
the scaling needed to get a limiting distribution is much faster here than in the regular case

(we have to multiply by n to get a non-degenerate limit);

— the limit is not normal.
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Uniform example
Comparison of the distributions of 6 in a regular case (panels above, with standard deviation o n~1/2)

and in a nonregular case (Example 53, panels below, with standard deviation oc n™1). In other
nonregular cases it might happen that the distribution is nasty (unlike here) and/or that the

convergence is slower than in regular cases.
n=256, regular

n=16, regular n=64, regular
> ° 2 0 2
2 - 2 o 2
é o 8 o A
S Tr—r 1 T 1 <2 e e e | R e e
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
MLE MLE MLE

n=16, non-regular n=64, non-regular n=256, non-regular

> © > >
RIS ST I R
[ [ [
S e I | S e S e I e |
1.0 14 18 1.0 14 18 1.0 14 18
MLE MLE MLE
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3.2 Vector Parameter slide 109

Vector case

O When 6 is a vector and under classical asymptotics we base inference on the distributional
approximations

0% Nal,, 771, w(0g) =2{0@) —£0,)} <3, s(05) =720 (8,) ~ Na(0, 1)

with

— the first very commonly used for inferences on parameters;

— the second used to test whether § = 6,;

— the third much less used than the others, generally in the form s(6,)"s(6,) ~ x2.

0 If @ divides into a p x 1 interest parameter 1 and a ¢ X 1 nuisance parameter ), then

-~ ~ —~ —1
) {0 2
A PR\ N ) " \Dw T ’

where for brevity we now write X¢ = max £(, ), 6 = §w = (¢,Xw),

0¢(0) . ~ 020(0) ~ 020(0)
by = —— ) = —lypy = — , Lypy = , etc.
P B oo, Ty a0 MOYT 0—i a0 MOYT o—i
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Inference on v
O Under classical asymptotics and setting 7% = (G — jw)j/\_)\ljw)_l we have
N N, <1/Jg,f7\ww) maximum likelihood estimator,
s(g) = gjlwgw ~ XIQ) score statistic,
wp(1g) = 2 {EP(QZ) - Epwg)} ~ XIQ) (generalized) likelihood ratio statistic,

where we defined wy, using the profile log likelihood /() = e(zp,Xw) = max) (¢, \).
O If ¢ is scalar (p = 1, the usual situation), the likelihood root is defined as

r(aty) = sign (& — 1y ) \Jw(tsy) ~ N(0,1).

— inferences using w(t),) and 7(1),) are invariant to interest-respecting reparametrisation, so are
preferable but more computationally burdensome;

[0 Properties:

—  5(1pg) is mainly used for tests, since only A must be estimated (as ¢ = 9, is known).

O A (1 — «) confidence set based on wy(1)4) (or equivalently on ¢,(z))) is

{0 wp@) <301 - )} = {6, R) 2 4B, %) - 1d( - o)}
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Note: Large-sample distribution of the likelihood ratio statistic w, ()

[0 We write R R R R
wp(Yg) = 2{€(0) — £(0y)} = 2{€(0) — £(6y)} — 2{€(0y) — £(6,)}
and use Taylor series to approximate both terms by quadratic forms in o — 6, and Xw —Ag.

[0 To lighten the notation we let ¢, ¢ and ¢ denote L(thg, Ag), e(ng,X%) and £(1), \), and likewise
with derivatives such as £y = 90(0)/00g—g,, Lry = 0*(0)/ONIYP™ |9—g,. We shall also replace
matrices such as fyy by large-sample approximations such as —ugy; this can be justified by dividing

both sides by n and noting that —lgg(6,) — 21 (6,).

O We shall need to express £y, £, and Xw — Ag in terms of 0 — f4. Taylor expansion gives
0="0g= Lo+ Log(0 —0g) + - = Lo —109(6 — 0,) + -,

where - - - denotes terms of smaller order containing third derivatives of £. The A\ component of
this equation is R R
O:g)\—l)\d,(’l/J—’l/Jg)—Z)\)\()\—)\g)—l---- .
Likewise . R R
OZE)\ZE)\—i-g)\)\()\w—)\g)—i---- Zﬁ)\—z)\)\()\d,—)\g)—i—--- .

Equating the expressions for £, from the last two displays gives

O = 1 (0 — ) + (A = Ag) = 1Ay — Ag),
so
lo=190(0 —0g), x =100y —Ng), Ap—Ag =X — Mg+ 1300 (¥ — ).
[0 To obtain the quadratic forms we write
00) = 00,)+ (0~ 05)" o+ 38— 05)"Coo(8 — 0y) + -
= U(0g) + (0 — 0g)100(0 — 05) — 5(0 — 0,)200(6 — 0,),

resulting in

-~

200) =0} = @0 w0 -0,) A A A
= (- %)Tzww(w - wy) +2(¢ — wg)TZW\()‘ - )‘g) + (A — )‘g)TZM()‘ - )\9)7
and likewise

2{0(0y) — £05)} = (= A) "y — Ay)
= {0 -2 + i@ =)} oa {A=29) + in(@ - )}

= (W = dg) i (¥ — ¥) + 20 — ) Tra(h = Ag) + (= M) "o (A —
Subtracting the two quadratic forms gives
wp(ty) = 2{e(0) — £(6,)} — 2{0(By) — £(6y)}
= (1) — 1g) " (g — toatyy i) (¥ — ),
and as ¢ ~ N{tg, (tpp — tpatirniag) "}, we see that wy(1hg) ~ X2, as claimed.

~

[0 Here we are under classical asymptotics, whereby the dimensions of 1) and \ are fixed and n — oo,
and arguments along the lines of Theorem 50 show that the terms - - - all tend in probability to
zero, and thus do not affect the limiting distribution.
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Example: Human lifespan

Example 54 Profile log likelihoods for the endpoint v of a generalized Pareto model fitted to data on
lifetimes of persons aged over 105 from different databases, with thresholds at 105, 108, 110 years.
Here X is scalar, so p = q = 1, and the horizontal line at —%)&(0.95) = —1.92 indicates 95%
confidence regions.

B0 10 150 160
lifespan (years)

From Belzile et al. (2022, Annual Review of Statistics and its Application).
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Model selection
O The fact that

KL(g, f) = Eg{log g(Y') —log f(Y)} = E4 {— log {%H >0

is minimised when f = g suggested comparing competing models F1, ..., Fjs by their maximised
log likelihoods log fi, (y; 0m) = .-

O But Zm should be penalized, because
- Zm > log fim(y; 0 ) even if F,, is the true model class, and

— enlarging 6, will increase ¢, even if further parameters are unnecessary.

~

O Akaike proposed minimising 2E,E/ [— log{f(Y+;0)/g(Y+)}], where Y,V % g are
independent datasets. The idea is that if h= §(Y) is estimated separately from YT, there will be
a penalty due to ‘missing 6," which will grow with dim(#) (picture ...)

0 This leads to choosing m to minimise the Akaike or the network information criteria

~

AIC,, = 2 (dm _ Zm) . NIC,, =2 {tr(hmjngl) - Zm} :

where the first takes tr(ﬁmjn_ll) ~ dy, = dim(6,,).
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Note: Derivation of AIC/NIC

O As
2B E [— log{f(Y™; 5)/9(Y+)}] = 2B {logg(Y ")} — 2E,E; {log fYy 5)} :

we can ignore the first term in the minimisation over f. An unbiased estimator of the second term
would be —207(6), where T is the log likelihood based on Y'* and gi is based on Y, but the
estimator we have available is —26(9), in which the log likelihood and @ are both based on Y.
Clearly 6(5) is upwardly biased, but by how much?

O To find out we consider the Taylor expansion
2T (O) = 21O +20 -0 O) + (0 —01)T,01)(0—-0") +
— 2T() —tr {(é— 07 ) 299(04)(0 — §+)} +
— 2t (@) —tr {(5— 65) (@ — §+)Tz@9(eg)} T

where §* maximises ¢t (6), & maximises £(6), we have replaced —¢, () by its large-sample limit
199(64) and neglected terms that are o0,(1). Recall that 6, is the large-sample limit of 6 when data
are sampled from g.

[0 Now 8% and 8 are independent and approximately Nu(0,, V), where V' = 15, (0,)7(0,)25, (8,), so
O+ — 0 ~ Ny(0,2V), giving

—2E,E} {ﬁ(ﬁ)} = 9B} {z(é)} +tr {2V99(6,)} + o(1)

- [tr {h(0g)15 (0,)} — B B {e(@)H +o(1).
O If 2(6y) = 190(0y), then this final expression can be estimated by AIC = 2{d — ((A)}, where
d = dim(), or by the network information criterion NIC = 2{tr(h7 %) — £(6)}.
O Neither AIC or NIC gives consistent selection of the true model, which would require the penalty
to grow with n.

OO The calculations above use generic large-sample likelihood approximations, and can be improved in
specific cases (e.g., with normal errors).
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3.3 Nuisance Parameters slide 114

Effect of nuisance parameters

Example 55 (Neyman—Scott) Find the profile log likelihood for o when (y;1,y;2) by N(pj,02),
forj=1,...,n. Comment.

O Profiling over many nuisance parameters can lead to completely wrong inferences, as the previous
example shows.

0 Even when the number of nuisance parameters is o(n) we may run into trouble: in general
Bias (1);) = O(d®/n),

so for the bias to tend to zero in large samples we require d = o(n'/3) for consistency of J Hence
bias increases with dim(\), at least in general.

O How can we rescue ‘ordinary’ likelihood inference when there are many nuisance parameters?
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Note to Example 55
O The overall log likelihood is

00”1, s pin) = —5 | (2n) log o +—3 Z{yﬂ—ﬂa + (g2 — 1j)°}|

and differentiation with respect to ; gives that fi; = (y;1 + yj2)/2, so as

{a—(a+0)/2}* +{b— (a+1)/2}* = (a —1)?/2,
we obtain

1 n
gp(0,2) = —nlog o2 — E Z(yﬂ — ng)z, o? > 0.
j=1
0 This is maximised at 6, = (4n) ' 377 (yj1 — y;2)°, but as Yj1 — Yjo X A(0,202), we see that
0% £, 02/2 as n — oo; this is a completely inconsistent estimator. Hence the profile log
likelihood has its asymptotic maximum in completely the wrong place.

O In this example there are d = n + 1 parameters of which n are nuisance parameters.
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Dealing with nuisance parameters

O Approaches to dealing with high-dimensional X include:

— basing inference on a marginal likelihood or a conditional likelihood,

Fi, A) = f(w;) x f(y |w; v, N) = f(y | wy; ) x fwyg; ¥, A),

where w,, may not depend on 1) (recall Lemmas 39 and 40) — OK for any configuration of As,
but may lose information on ;

— constructing a partial likelihood (like the above, but harder to build);

— higher-order inference, via, e.g., a modified profile likelihood or a modified likelihood
root, which can approximate both conditional and marginal likelihoods;

— using orthogonal parameters, i.e., mapping A — ((A, 1) which is orthogonal to 1;
— using a composite likelihood in which )\ does not appear; or

— taking A ~ h(-) and using the integrated likelihood [ f(y;4, A\)h(\) A\ — depends on h,
like Bayesian inference.

0 We have already seen examples of marginal and conditional likelihoods.

0 Below we sketch some of the other approaches.
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Modified profile likelihood
O Replace profile log likelihood ¢,(¢)) by the modified profile log likelihood
lp (V) = 6p(¥) + m(¥),

with m(1)) chosen to make ¢;, closer to a marginal or conditional log likelihood.

O Taking
m(e) = 5 log |1, 3)| +log | 25

does this in some generality.
O The

— first term of m()) can be obtained numerically if need be, but

— the second term, a Jacobian needed to make /., invariant to interest-preserving

reparametrisation, is hard to compute in general.
O Simpler to base a likelihood on the normal distribution of the modified likelihood root 7*(¢) (next).
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0

Higher-order inference . ..

Classical theory gives first-order accuracy, i.e., with 1) scalar
P {r(vy) < r°(49)} = {ro(W)} + O(n~1/?),
so tests and one-sided confidence sets

{v:r°(¢) < 2120}

based on the observed data y° have error n=1/2.

If we replace (1)) by the modified likelihood root,

) e 1o [0
)=+ e ion{ T

where ¢(1)) depends on the model, then for continuous responses the error drops to O(n~=/2), so
P {1 () < 7°°(4g)} = 2{r*° ()} + O(n=*?),

so a one-sided confidence set

{t:17°(¢) <2120}

has error of order n3/2; often this almost exact even for tiny n (recall Example 52).
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. with nuisance parameters

O With nuisance parameters, r(1)) = sign(iz— )/ wp (), and

~ ~ ~ 1/2
_ [#(0) — (0y) ©a(6y) | 7]
) 000 | {|m< >|}

where ¢ is the d x 1 canonical parameter of a local exponential family approximation to the
model at the observed data y°, with () = 0p(6)/00", etc

O In a general exponential family ¢(0) is the canonical parameter, and in a linear exponential family,

1/2
W) = (@ — ) {Ll),} |

|72 (0

O In general for independent continuous observations we write

oL(6; y) + O0log f(y;39, A)
(0)ax1 = Viyy —5— ;
( ) x1 dx 8y - Z J ay] s
where the 1 x d vectors V; = 0y; /00" are evaluated at y° and 6°.
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Properties of higher order approximations

Invariant to interest-respecting reparameterization.
Computation almost as easy as first order versions.
Error O(n=3/2) in continuous response models, O(n~1) in discrete response models.

Relative (not absolute) error, so highly accurate in tails.

Oo0ooDoaod

Bayesian version is also available (and easier to derive).

Example 56 (Location-scale model) Compute ¢(0) for a location-scale model, in which
independent observations Y; have density T~ *h{(y —n)/7}. What about the normal density?
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Note to Example 56

O In this case the overall log likelihood is
n
((n,7) = —nlog + > logh{(y; —n)/7},
j=1
so the vector 9¢(n, T)/dy has components 7~ (log h)'{(y; — n)/7}, evaluated at the parameters n
and 7 and observed data vector y5, ..., y;.

[0 To compute the V; we use the structural expression y = n + 7¢, where € ~ h. This represents y as
a function of 7 = (n,7), and yields 0y;/06" = (1,¢;). This has to be evaluated at the observed
data point 3°, and at that point the parameters are replaced by their maximum likelihood
estimates, giving V' = (1, (y7 — 7°)/7°).

O This yields

ZT (log h)'{(y§ — n)/T}(1,€9)",
where we have set €7 = (y] — 7] )/T
O If his normal, then log h(u) = —u?/2, so (log h)'{(y$ —n)/7} = —(y5 —n)/7, leading to
n n
p0) =D =N/ =)/ xe; | = (/7% 1/77),

j=1 j=1
because it turns out that inferences are invariant under non-singular affine transformations of ()
(exercise).
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Orthogonal parameters

O If the expected information matrix is block diagonal, with 2, (#) = 0 for all 6, then U is
asymptotically independent of A, and we can hope that the effect on ¢ of estimating A will be
limited. If so, we say that %) and X are orthogonal.

0 To see the effect of this, we expand the equation defining Xd, around 9, giving

oL(By)  90(B)  92@B) ~
= = 0. —0) + -
! ox  on < anagr v O
9200) ~ ~  9%(6) ~
= Ay — A —
= Py = A) + (W — ) +
which implies that R R R
Ap = A+ s (¥ — ) +

00 Hence if we can arrange the model so that 7, = 0, for example by parametrising it so that
1y (0) = 0, then Ay, will depend only weakly on 1), and we can ignore the Jacobian term in the
modified profile likelihood.

O This suggests mapping an original parametrisation (¢,7) to (1, A), where A = A(¢, ) is
orthogonal to .
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Orthogonalisation
O  Writing v = (¢, \) gives
L, ) = {Y, (W, M)}
and differentiation with respect to ¢ and ) leads to
o G A SR o 2] 0%~ or*
ONOY 0N OyOY  ON OyOyT oY ONIY Oy

O For orthogonality this must have expectation zero, so

ot O Oy

0="3x"t ax gy

%, are components of the expected information matrix in the non-orthogonal

parametrization, so A solves the system of ¢ PDEs

*
where U and ¢

O _
oy

O In fact an explicit expression for A in terms of ¢ and + is not needed to compute £y, in the new
parametrisation.

_Z:kygl (1/}7 ’Y)Zf/w (1/}7 7)
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Orthogonal parametrisation

O A solution (possibly numerical) always exists when dim(¢)) = 1, but need not exist when v is
vector, because then we must simultaneously solve

a *— * a *— *
8—12/1 - _Zvvl(wv'}’)zwwl (1/}77)7 8—12/2 - _1771(¢’7)Z’Y¢2 (w’fY)’

for all v, 1 and 19, but the compatibility condition

827 B 0%y
0102 OOy

may fail.

Example 57 (Linear exponential family) What parameter is orthogonal to v in the linear
exponential family with log likelihood

Consider normal and Poisson likelihoods in particular.
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Note to Example 57
O The parameters A = A(¢),~y) orthogonal to ¢ are determined by

Oy
o7

If we reparametrize in terms of ¢ and A\ = k- (v, ) = 0k(2),7)/0v, then in this new
parametrization, «y is a function of ¥ and A, and

ooy,
op O
so A = k(1,7) is a solution to (4). That is, the parameter orthogonal to ® is the so-called
complementary mean parameter A(¢,v) = E(S2;1,7). By symmetry, E(S1;%,7) is orthogonal to
7.

[0 The normal distribution with mean u and variance o has canonical parameter (11/02, —1/(20?)).
The canonical statistic (Y, Y ?) has expectation (u, 1% + 02), so p is orthogonal to —1/(2¢%), and
hence to o2, while 11/0? is orthogonal to u? + o2.

0 77(7/1,7) + kjlﬁ’y(qﬁa’y)’

O Independent Poisson variables Y7 and Y5 with means exp() and exp(vy + ) have log likelihood
C (7)) = (Y1 +y2)y +y2tp — € — T
The discussion above suggests that
A=E(Y1+Y2) = exp(y) + exp(y + ) = €7 (1 +¢¥)
is orthogonal to v, so v = log A — log(1 + e¥) and
0¥, ) =yt = (1 + y2) log(1 + ) + (41 + y2) log A — X

The separation of b and X implies that the profile and modified profile likelihoods for ¢ are
proportional. They correspond to the conditional likelihood obtained from the density of Y5 given
Y1 +Ya.
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Composite likelihood
[0 Used when full likelihood can’t be computed but densities for distinct subsets of the observations,
YSys- - -+ YSe, are available, can use a composite (log) likelihood
c
lo(9) =) log f(ys.:0)-
=1
[0 The choice of subsets Sy, ...,Sc determines what parameters can be estimated.
O Special cases:
- independence likelihood takes S; = {y;} and treats (possibly dependent) y; as independent;
— pairwise likelihood uses subsets of distinct pairs {y;,y;/}.
O May be useful with spatial data, and then contributions from distant pairs may be downweighted
or dropped entirely.
[ £c(0) satisties the first Bartlett identity, so can give consistent estimators 0, but requires a
sandwich variance matrix (or some other approach) to estimate var(9).
0 Model comparisons use the composite likelihood information criterion
CLIC = 2 [tr{h(é) 2071 — 1c(6)] .
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Comments
OO0  Other likelihoods and/or likelihood-like functions are widely used, especially
— partial likelihood, used to eliminate nuisance functions for inference (survival data),
— quasi-likelihood, used to model over-dispersion in exponential family models,
— pseudo-likelihood, treats data as Gaussian even when they are not (econometrics), and
— empirical likelihood, an extension of nonparametric modelling (econometrics).
[0 Strengths of likelihood approach:
— heuristic as plausibility of a model as explanation of data;
— we 'just’ have to write down the density of the observed data;
— invariance to data and parameter transformations;
— general (and ‘optimal’) approximate theory for inference in regular models;
— close links to Bayesian inference.
0 Weaknesses of likelihood approach:
— requires ‘parametric’ model for data;
— can fail in high-dimensional settings;
— not all models are regular.
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